The Tricarballylate Utilization ( tcuRABC ) Genes of Salmonella enterica Serovar Typhimurium LT2

Author:

Lewis Jeffrey A.1,Horswill Alexander R.1,Schwem Brian E.1,Escalante-Semerena Jorge C.1

Affiliation:

1. Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin

Abstract

ABSTRACT The genes of Salmonella enterica serovar Typhimurium LT2 encoding functions needed for the utilization of tricarballylate as a carbon and energy source were identified and their locations in the chromosome were established. Three of the tricarballylate utilization ( tcu ) genes, tcuABC , are organized as an operon; a fourth gene, tcuR , is located immediately 5′ to the tcuABC operon. The tcuABC operon and tcuR gene share the same direction of transcription but are independently transcribed. The tcuRABC genes are missing in the Escherichia coli K-12 chromosome. The tcuR gene is proposed to encode a regulatory protein needed for the expression of tcuABC . The tcuC gene is proposed to encode an integral membrane protein whose role is to transport tricarballylate across the cell membrane. tcuC function was sufficient to allow E. coli K-12 to grow on citrate (a tricarballylate analog) but not to allow growth of this bacterium on tricarballylate. E. coli K-12 carrying a plasmid with wild-type alleles of tcuABC grew on tricarballylate, suggesting that the functions of the TcuABC proteins were the only ones unique to S. enterica needed to catabolize tricarballylate. Analyses of the predicted amino acid sequences of the TcuAB proteins suggest that TcuA is a flavoprotein, and TcuB is likely anchored to the cell membrane and probably contains one or more Fe-S centers. The TcuB protein is proposed to work in concert with TcuA to oxidize tricarballylate to cis- aconitate, which is further catabolized via the Krebs cycle. The glyoxylate shunt is not required for growth of S. enterica on tricarballylate. A model for tricarballylate catabolism in S. enterica is proposed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3