Staphylococcal Interspersed Repeat Unit Typing of Staphylococcus aureus : Evaluation of a New Multilocus Variable-Number Tandem-Repeat Analysis Typing Method

Author:

Conceição Teresa1,Aires de Sousa Marta12,de Lencastre Hermínia13

Affiliation:

1. Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica (ITQB), Oeiras, Portugal

2. Escola Superior de Saúde da Cruz Vermelha Portuguesa (ESSCVP), Lisbon, Portugal

3. Laboratory of Microbiology, The Rockefeller University, New York, New York

Abstract

ABSTRACT The present study evaluates the performance of the staphylococcal interspersed repeat unit (SIRU) method applied to a diverse collection of 104 Staphylococcus aureus isolates previously characterized by pulsed-field gel electrophoresis (PFGE), spa typing, multilocus sequence typing (MLST), and staphylococcal cassette chromosome mec typing for methicillin-resistant S. aureus . The SIRU method distributed the 104 strains into 81 SIRU profiles that could be clustered into 12 groups and 29 singletons. The discriminatory power of the method at the profile level, translated by Simpson's index of diversity (SID), was similar to that of PFGE subtyping (SID = 99.23% versus 99.85%) and slightly higher than that of spa typing (SID = 97.61%). At the group level, the SIRU SID (93.24%) was lower than that of PFGE typing (95.41%) but higher than that of MLST (SID = 91.77%). The adjusted Rand (AR) coefficient showed that SIRU typing at the group level had the highest congruence with MLST (AR = 0.5736) and with clonal complex (CC) (AR = 0.4963) but the lowest congruence with PFGE subtype (AR = 0.0242). The Wallace coefficient indicated that in the present collection, two strains with the same SIRU profile have a 100% probability of belonging to the same CC, a 90% probability of sharing the same spa type, and an 83% probability of being classified in the same sequence type. The high discriminatory power of the SIRU method, along with its apparent concordance with MLST results, makes it potentially valuable for S. aureus short-term epidemiological investigations and population dynamics as well.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3