Author:
Qin Aiping,Cai Weiping,Pan Ting,Wu Kang,Yang Qiong,Wang Nina,Liu Yufeng,Yan Dehong,Hu Fengyu,Guo Pengle,Chen Xiaoping,Chen Ling,Zhang Hui,Tang Xiaoping,Zhou Jie
Abstract
ABSTRACTT lymphocyte dysfunction contributes to human immunodeficiency virus type 1 (HIV-1) disease progression by impairing antivirus cellular immunity. However, the mechanisms of HIV-1 infection-mediated T cell dysfunction are not completely understood. Here, we provide evidence that expansion of monocytic myeloid-derived suppressor cells (M-MDSCs) suppressed T cell function in HIV-1-infected individuals. We observed a dramatic elevation of M-MDSCs (HLA-DR−/lowCD11b+CD33+/highCD14+CD15−cells) in the peripheral blood of HIV-1-seropositive subjects (n= 61) compared with healthy controls (n= 51), despite efficacious antiretroviral therapy for nearly 2 years. The elevated M-MDSC frequency in HIV-1+subjects correlated with prognostic HIV-1 disease markers, including the HIV-1 load (r= 0.5957;P< 0.0001), CD4+T cell loss (r= −0.5312;P< 0.0001), and activated T cells (r= 0.4421;P= 0.0004). Functional studies showed that M-MDSCs from HIV-1+subjects suppressed T cell responses in both HIV-1-specific and antigen-nonspecific manners; this effect was dependent on the induction of arginase 1 and required direct cell-cell contact. Further investigations revealed that direct HIV-1 infection or culture with HIV-1-derived Tat protein significantly enhanced human MDSC generationin vitro, and MDSCs from healthy donors could be directly infected by HIV-1 to facilitate HIV-1 replication and transmission, indicating that a positive-feedback loop between HIV-1 infection and MDSC expansion existed. In summary, our studies revealed a novel mechanism of T cell dysfunction in HIV-1-infected individuals and suggested that targeting MDSCs may be a promising strategy for HIV-1 immunotherapy.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献