The class III phosphatidylinositol 3-kinase VPS34 supports EV71 replication by promoting viral replication organelle formation

Author:

Wu Bo1,Fan Tingting1,Chen Xinrui1,He Yingli2ORCID,Wang Hongliang12ORCID

Affiliation:

1. Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China

2. Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

Abstract

ABSTRACT Enterovirus 71 (EV71) belongs to the family of Picornaviridae ; it could cause a variety of illnesses and pose a great threat to public health worldwide. Currently, there is no specific drug treatment for this virus, and a better understanding of virus-host interaction is crucial for novel antiviral development. Here, we find that the class III phosphatidylinositol 3-kinase, VPS34, is an essential host factor for EV71 infection. VPS34 inhibition with either shRNA or specific chemical inhibitor significantly reduces EV71 infection. Meanwhile, EV71 infection upregulates phosphatidylinositol 3-phosphate (PI3P) production in viral replication organelles (ROs), while the depletion of PI3P by phosphatase overexpression inhibits EV71 infection. In addition, the PI3P-binding protein, double FYVE-containing protein 1 (DFCP1), is also required for an efficient replication of EV71. DFCP1 could interact with viral 2C protein and facilitate viral association with lipid droplets (LDs), which are important lipid sources for viral RO biogenesis. Taken together, these results indicate that EV71 virus exploits the VPS34-PI3P-DFCP1-LDs pathway to promote viral RO formation and viral infection, and they also illuminate novel targets for antiviral development. IMPORTANCE Enterovirus 71 (EV71) is a major pathogen that causes hand-foot-and-mouth disease (HFMD) and other serious complications, which are big threats to children under 5 years old. Unravelling the interactions between virus and the host cells will open new avenues in antiviral research. Here, we found the class III phosphatidylinositol 3-kinase, VPS34, and its effector, double FYVE-containing protein 1 (DFCP1), were essential for EV71 infection, both of which could support EV71 viral replication by enhancing the biogenesis of viral replication organelles (ROs). As DFCP1 localizes to lipid droplets, hijacking of these host factors will enable viral utilization of lipids from LDs for the generation of membrane structures during RO biogenesis. In addition, the VPS34 kinase inhibitor was found to be potent against EV71 infection; therefore, this study also brings up a novel target for future anti-EV71 drug development.

Funder

MOST | National Natural Science Foundation of China

Outstanding Youth Fund of Shaanxi Province

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3