Multidrug Resistance Conferred by Novel DNA Polymerase Mutations in Human Cytomegalovirus Isolates

Author:

Scott Gillian M.123,Weinberg Adriana4,Rawlinson William D.1523,Chou Sunwen6

Affiliation:

1. Virology Research, POWH and UNSW Research Laboratories

2. School of Medical Sciences, Faculty of Medicine

3. School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia

4. Infectious Diseases, Departments of Pediatrics and Medicine, University of Colorado Health Sciences Center, Denver, Colorado

5. Department of Microbiology, SEALS, Prince of Wales Hospital, Randwick, NSW, Australia

6. Medical and Research Services, Veterans Affairs Medical Center, and Division of Infectious Diseases, Oregon Health and Science University, Portland, Oregon

Abstract

ABSTRACT The emergence of antiviral-resistant cytomegalovirus (CMV) strains is a continuing clinical problem, with increased numbers of immunocompromised patients given longer-duration antiviral prophylaxis. Two previously unrecognized CMV DNA polymerase mutations (N408K and A834P) identified separately and together in at-risk lung and kidney transplant recipients and a third mutation (L737M) identified in a liver transplant recipient were characterized by marker transfer to antiviral-sensitive laboratory strains AD169 and Towne. Subsequent phenotypic analyses of recombinant strains demonstrated the ability of mutation N408K to confer ganciclovir (GCV) and cidofovir (CDV) resistance and of mutation A834P to confer GCV, foscarnet, and CDV resistance. Mutation L737M did not confer resistance to any of the antiviral agents tested. A recombinant strain containing both N408K and A834P demonstrated increased GCV and CDV resistance compared to the levels of resistance of the virus containing only the A834P mutation. The addition of mutation N408K in combination with A834P also partially reconstituted the replication impairment of recombinant virus containing only A834P. This suggests that perturbation of both DNA polymerization (A834P) and exonuclease (N408K) activities contributes to antiviral resistance and altered replication kinetics in these mutant strains. The identification of these multidrug-resistant CMV strains in at-risk seronegative recipients of organs from seropositive donors suggests that improved prophylactic and treatment strategies are required. The additive effect of multiple mutations on antiviral susceptibility suggests that increasing antiviral-resistant phenotypes can result from different virus-antiviral interactions.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3