Protective efficacy and correlates of immunity of immunodominant recombinant Babesia microti antigens

Author:

Meredith Scott1ORCID,Majam Victoria1,Zheng Hong1,Verma Nitin1,Puri Ankit1,Akue Adovi2,KuKuruga Mark2,Oakley Miranda1,Kumar Sanjai1ORCID

Affiliation:

1. Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland, USA

2. Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland, USA

Abstract

ABSTRACT Babesia microti, an intraerythrocytic apicomplexan parasite, is the primary causative agent of human babesiosis and an emerging threat to public health in the United States and elsewhere. An effective vaccine against B. microti would reduce disease severity in acute babesiosis patients and shorten the parasitemic period in asymptomatic individuals, thereby minimizing the risk of transfusion-transmitted babesiosis. Here we report on immunogenicity, protective efficacy, and correlates of immunity following immunization with four immunodominant recombinantly produced B. microti antigens—Serine Reactive Antigen 1 (SERA1), Maltese Cross Form Related Protein 1 (MCFRP1), Piroplasm β-Strand Domain 1 (PiβS1), and Babesia microti Alpha Helical Cell Surface Protein 1 (BAHCS1)—delivered subcutaneously in Montanide ISA 51/CpG adjuvant in three doses to BALB/c mice. Following B. microti parasite challenge, BAHCS1 led to the highest reduction in peak parasitemia (67.8%), followed by SERA1 (44.8%) and MCFRP1 (41.9%); PiβS1 (27.6%) had minimal protective effect. All four B. microti antigens induced high ELISA total IgG and each isotype; however, antibody levels did not directly correlate with anti-parasitic activity in mice. Increased prechallenge levels of some cell populations including follicular helper T cells (T FH ) and memory B cells, along with a set of six cytokines [IL-1α, IL-2, IL-3, IL-6, IL-12(p40), and G-CSF] that belong to both innate and adaptive immune responses, were generally associated with protective immunity. Our results indicate that mechanisms driving recombinant B. microti antigen-induced immunity are complex and multifactorial. We think that BAHCS1 warrants further evaluation in preclinical studies.

Funder

MOHW | Food and Drug Administration

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3