Inhibition of Erythrocyte Invasion and Plasmodium falciparum Merozoite Surface Protein 1 Processing by Human Immunoglobulin G1 (IgG1) and IgG3 Antibodies

Author:

Lazarou Maria1,Patiño José A. Guevara2,Jennings Richard M.2,McIntosh Richard S.1,Shi Jianguo1,Howell Steven3,Cullen Eilish4,Jones Tarran4,Adame-Gallegos Jaime R.1,Chappel Jonathan A.4,McBride Jana S.5,Blackman Michael J.2,Holder Anthony A.2,Pleass Richard J.1

Affiliation:

1. Institute of Genetics, School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom

2. Divisions of Parasitology

3. Molecular Structure, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom

4. MRC Technology Mill Hill, London NW7 1AD, United Kingdom

5. Institute of Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom

Abstract

ABSTRACT Antigen-specific antibodies (Abs) to the 19-kDa carboxy-terminal region of Plasmodium falciparum merozoite surface protein 1 (MSP1 19 ) play an important role in protective immunity to malaria. Mouse monoclonal Abs (MAbs) 12.10 and 12.8 recognizing MSP1 19 can inhibit red cell invasion by interfering with MSP1 processing on the merozoite surface. We show here that this ability is dependent on the intact Ab since Fab and F(ab′) 2 fragments derived from MAb 12.10, although capable of binding MSP1 with high affinity and competing with the intact antibody for binding to MSP1, were unable to inhibit erythrocyte invasion or MSP1 processing. The DNA sequences of the variable (V) regions of both MAbs 12.8 and 12.10 were obtained, and partial amino acid sequences of the same regions were confirmed by mass spectrometry. Human chimeric Abs constructed by using these sequences, which combine the original mouse V regions with human γ1 and γ3 constant regions, retain the ability to bind to both parasites and recombinant MSP1 19 , and both chimeric human immunoglobulin G1s (IgG1s) were at least as good at inhibiting erythrocyte invasion as the parental murine MAbs 12.8 and 12.10. Furthermore, the human chimeric Abs of the IgG1 class (but not the corresponding human IgG3), induced significant NADPH-mediated oxidative bursts and degranulation from human neutrophils. These chimeric human Abs will enable investigators to examine the role of human Fcγ receptors in immunity to malaria using a transgenic parasite and mouse model and may prove useful in humans for neutralizing parasites as an adjunct to antimalarial drug therapy.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3