Affiliation:
1. Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
Abstract
ABSTRACT
Hand, foot, and mouth disease (HFMD) is a reemerging illness caused by a variety of enteroviruses. The main causative agents are enterovirus 71 (EV71), coxsackievirus A16 (CVA16), and, most recently, coxsackievirus A6 (CVA6). Enterovirus infections can vary from asymptomatic infections to those with a mild fever and blisters on infected individuals' hands, feet, and throats to infections with severe neurological complications. Viral persistence for weeks postinfection (wpi) has also been documented by the demonstration of virus in children's stools. However, little is known about disease progression, viral spread, and tissue tropism of these viruses. These types of studies are limited because many recently developed mouse models mimic the severe neurological complications that occur in a small percentage of enterovirus infections. In the present study, we documented real-time EV71 infection in two different mouse strains by the use of
in vivo
imaging. Infection of BALB/c mice with a bioluminescent mouse-adapted EV71 construct (mEV71-NLuc) resulted in a lack of clinical signs of disease but in relatively high viral replication, as visualized by luminescence, for 2 wpi. In contrast, mEV71-NLuc infection of AG129 mice (alpha/beta and gamma interferon receptor deficient) showed rapid spread and long-term persistence of the virus in the brain. Interestingly, AG129 mice that survived infection maintained luminescence in the brain for up to 8 wpi. The results we present here will allow future studies on EV71 antiviral drug susceptibility, vaccine efficacy, transmissibility, and pathogenesis.
IMPORTANCE
We report here that a stable full-length enterovirus 71 (EV71) reporter construct was used to visualize real-time viral spread in AG129 and BALB/c mice. To our knowledge, this is the first report of
in vivo
imaging of infection with any member of the
Picornaviridae
family. The nanoluciferase (NLuc) gene, one of the smallest luciferase genes currently available, was shown to be stable in the EV71 genome for eight passages on rhabdomyosarcoma cells. Real-time visualization of EV71 infection in mice identified areas of tropism that would have been missed by traditional methods, including full characterization of EV71 replication in BALB/c mice. Additionally, the bioluminescent construct allowed for increased speed and sensitivity of cell culture assays and will allow future studies involving various degrees of enterovirus infection in mice, not just severe infections. Our data suggest that interferon plays an important role in controlling EV71 infection in the central nervous system of mice.
Funder
HHS | NIH | National Institute of Allergy and Infectious Diseases
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference40 articles.
1. Virology, epidemiology, pathogenesis, and control of enterovirus 71
2. Hand-foot-and-mouth disease
3. Enterovirus surveillance—United States, 1970–2005;Khetsuriani N;MMWR Surveill Summ,2006
4. Coxsackievirus A6 and Hand, Foot, and Mouth Disease, Finland
5. Hand, Foot, and Mouth Disease Outbreak and Coxsackievirus A6, Northern Spain, 2011
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献