Affiliation:
1. Department of Medicine, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, 1 and
2. Department of Pharmacology 2 and
3. Section of Biochemistry, Molecular and Cell Biology, 3 Cornell University College of Veterinary Medicine, Ithaca, New York
Abstract
ABSTRACT
Reorganization of the actin cytoskeleton is an early cellular response to a variety of extracellular signals. Dissection of pathways leading to actin rearrangement has focused largely on those initiated by growth factor receptors or integrins, although stimulation of G protein-coupled receptors also leads to cytoskeletal changes. In transfected Cos-7SH cells, activation of the chemoattractant formyl peptide receptor induces cortical actin polymerization and a decrease in the number of central actin bundles. In this report, we show that cytoskeletal reorganization can be transduced by G protein βγ heterodimers (G
βγ
), phosphoinositide 3-kinase γ (PI3-K
γ
), a guanosine exchange factor (GEF) for Rac, and Rac. Expression of inactive variants of either PI3-K
γ
, the Rac GEF Vav, or Rac blocked the actin rearrangement. Neither wortmannin nor LY294002, pharmacologic inhibitors of PI3-K, could inhibit the actin rearrangement induced by a constitutively active Rac. The inhibition of cytoskeletal reorganization by the dominant negative Vav variants could be rescued by coexpression of a constitutively active form of Rac. In contrast, a Vav variant with its pleckstrin homology (PH) domain missing constitutively induced JNK activation and led to cytoskeletal reorganization, even without stimulation by PI3-K
γ
. This suggests that the PH domain of Vav controls the guanosine exchange activity of Vav, perhaps by a mechanism regulated by D3 phosphoinositides generated by PI3-K. Taken together, these findings delineate a pathway leading from activation of a G protein-coupled receptor to actin reorganization which sequentially involves G
βγ
, PI3-K
γ
, a Rac GEF, and Rac.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
174 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献