Affiliation:
1. Department of Biological Sciences, Purdue University, Lafayette, Indiana 47907
Abstract
Escherichia coli
strain NP2907 was isolated as a spontaneous mutant of strain NP29, which possesses a thermolabile valyl-transfer ribonucleic acid (tRNA) synthetase. The valyl-tRNA synthetase of the new mutant, unlike that of its immediate parent, retains enzymatic activity in vitro but differs from the wild-type enzyme in stability and apparent
K
m
for adenosine triphosphate. The new mutant locus,
valS
-102, cotransduces with
pyrB
at the same frequency as does the parental locus,
valS
-1. Cultures of strain NP29 cease growth immediately in any medium when shifted from 30 to 40 C. The new mutant grows normally at 30 C, and upon a shift to 40 C growth quickly accelerates exactly as for normal cells. Exponential growth, however, cannot be sustained at 40 C. At a point characteristic for each medium, growth becomes linear with time. This transition occurs almost immediately in rich media and after 1.5 generations in glucose minimal medium. Net synthesis of valyl-tRNA synthetase ceases in the new mutant as soon as the temperature is raised to 40 C, irrespective of the growth medium. We conclude that it is the amount of valyl-tRNA synthetase activity that limits the rate of growth in the linear phase at 40 C. This property of the mutant makes it possible to evaluate the in vivo efficiency of this enzyme at different growth rates and thereby to determine the concentration that is necessary for a given rate of protein synthesis. The results of our measurements indicate that cells of
E. coli
growing in minimal medium normally possess a functional excess of valyl-tRNA synthetase with respect to protein synthesis and to repression of threonine deaminase.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献