Resistance of Pseudomonas aeruginosa to Gentamicin and Related Aminoglycoside Antibiotics

Author:

Holmes Randall K.1,Minshew Barbara H.1,Gould Kenneth1,Sanford Jay P.1

Affiliation:

1. Departments of Internal Medicine, Surgery, and Microbiology, University of Texas Southwestern Medical School, Dallas, Texas 75235

Abstract

This study was undertaken to investigate biochemical, genetic, and epidemiological aspects of resistance to aminoglycoside antibiotics among 650 consecutive isolates of Pseudomonas aeruginosa from Parkland Memorial Hospital, Dallas, Tex. In 364 strains, minimal inhibitory concentrations were 25 μg/ml or greater for gentamicin (G), tobramycin (T) or kanamycin (K). Four patterns of resistance were noted: (A) G, T, K (four strains), (B) G, K (23 strains), (C) T, K (one strain), and (D) K (336 strains). Gentamicin acetyltransferase (GAT) activities were associated with resistance to gentamicin in strains of groups A and B, whereas kanamycin phosphotransferase activity was found in strains of group D. The GAT from group B strains acetylates both gentamicin and tobramycin. Resistance to gentamicin and susceptibility to tobramycin may reflect the fact that the K m 's for tobramycin (25 to 44 μg/ml) of GAT activities in these group B strains are much greater than the K m 's for gentamicin (1.9 to 2.7 μg/ml) and exceed the minimal inhibitory concentrations for tobramycin (1.25 to 7.5 μg/ml). GAT from strains of group A was associated with resistance to G, T, and K. Gentamicin acetyltransferases can be distinguished by their specificities for aminoglycoside substrates. The substrate specificity of GAT from group B strains is similar to that reported for GAT I , but the specificity of GAT from group A strains differs from those described for GAT I and GAT II . Conjugal transfer of gentamicin or tobramycin resistance from our strains of P. aeruginosa to various potential recipient strains was not observed. Pyocin typing showed that many, but not all, of the strains resistant to gentamicin were similar, and retrospective epidemiological investigation revealed that these strains were isolated almost exclusively from patients in the adult and pediatric burn intensive care units and geographically continguous areas of the hospital.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3