Activities of Fosfomycin, Tigecycline, Colistin, and Gentamicin against Extended-Spectrum-β-Lactamase-Producing Escherichia coli in a Foreign-Body Infection Model

Author:

Corvec Stéphane,Furustrand Tafin Ulrika,Betrisey Bertrand,Borens Olivier,Trampuz Andrej

Abstract

ABSTRACTLimited antimicrobial agents are available for the treatment of implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli. We compared the activities of fosfomycin, tigecycline, colistin, and gentamicin (alone and in combination) against a CTX-M15-producing strain ofEscherichia coli(Bj HDE-1)in vitroand in a foreign-body infection model. The MIC and the minimal bactericidal concentration in logarithmic phase (MBClog) and stationary phase (MBCstat) were 0.12, 0.12, and 8 μg/ml for fosfomycin, 0.25, 32, and 32 μg/ml for tigecycline, 0.25, 0.5, and 2 μg/ml for colistin, and 2, 8, and 16 μg/ml for gentamicin, respectively. In time-kill studies, colistin showed concentration-dependent activity, but regrowth occurred after 24 h. Fosfomycin demonstrated rapid bactericidal activity at the MIC, and no regrowth occurred. Synergistic activity between fosfomycin and colistinin vitrowas observed, with no detectable bacterial counts after 6 h. In animal studies, fosfomycin reduced planktonic counts by 4 log10CFU/ml, whereas in combination with colistin, tigecycline, or gentamicin, it reduced counts by >6 log10CFU/ml. Fosfomycin was the only single agent which was able to eradicateE. colibiofilms (cure rate, 17% of implanted, infected cages). In combination, colistin plus tigecycline (50%) and fosfomycin plus gentamicin (42%) cured significantly more infected cages than colistin plus gentamicin (33%) or fosfomycin plus tigecycline (25%) (P< 0.05). The combination of fosfomycin plus colistin showed the highest cure rate (67%), which was significantly better than that of fosfomycin alone (P< 0.05). In conclusion, the combination of fosfomycin plus colistin is a promising treatment option for implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3