Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH

Author:

Thompson S A1,Blaser M J1

Affiliation:

1. Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Abstract

To understand the potential roles of the important DNA repair protein RecA in Helicobacter pylori pathogenesis, we cloned the recA gene from H. pylori 84-183. Degenerate PCR primers based on conserved RecA protein regions were used to amplify a portion of H. pylori recA, which was used as a probe to isolate the full-length recA gene from H. pylori genomic libraries. The H. pylori recA gene encoded a protein of 347 amino acids with a molecular mass of 37.6 kDa. As expected, H. pylori RecA was highly similar to other RecA proteins and most closely resembled that of Campylobacter jejuni (75% identity). Immediately downstream of recA was an open reading frame whose predicted product showed 58% identity to the Bacillus subtilis enolase protein. recA and eno were disrupted in H. pylori 84-183 by insertion of antibiotic resistance genes. Reverse transcription-PCR demonstrated that recA and eno were cotranscribed and that insertion of the kanamycin resistance gene into recA had polar effects on expression of the downstream eno. The H. pylori recA mutants were severely impaired in their ability to survive treatment with UV light and methyl methanesulfonate and with the antimicrobial agents ciprofloxacin and metronidazole. The eno mutant had sensitivities to UV light and metronidazole intermediate to those of wild-type and recA strains, suggesting that truncation of the recA-eno transcript resulted in lowered recA expression. For survival at low pH, a recA mutant was approximately 10-fold more sensitive than strain 84-183, while the eno mutant demonstrated intermediate susceptibility. This difference occurred in the presence or absence of urea, implying the involvement of a gene in the recA region in an acid resistance mechanism distinct from that mediated by urease.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3