Metabolic Analysis of Moraxella catarrhalis and the Effect of Selected In Vitro Growth Conditions on Global Gene Expression

Author:

Wang Wei1,Reitzer Larry2,Rasko David A.1,Pearson Melanie M.1,Blick Robert J.1,Laurence Cassie1,Hansen Eric J.1

Affiliation:

1. Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048

2. Molecular and Cell Biology Department, University of Texas at Dallas, Richardson, Texas 75083-0688

Abstract

ABSTRACT The nucleotide sequence from the genome of Moraxella catarrhalis ATCC 43617 was annotated and used both to assess the metabolic capabilities and limitations of this bacterium and to design probes for a DNA microarray. An absence of gene products for utilization of exogenous carbohydrates was noteworthy and could be correlated with published phenotypic data. Gene products necessary for aerobic energy generation were present, as were a few gene products generally ascribed to anaerobic systems. Enzymes for synthesis of all amino acids except proline and arginine were present. M. catarrhalis DNA microarrays containing 70-mer oligonucleotide probes were designed from the genome-derived nucleotide sequence data. Analysis of total RNA extracted from M. catarrhalis ATCC 43617 cells grown under iron-replete and iron-restricted conditions was used to establish the utility of these DNA microarrays. These DNA microarrays were then used to analyze total RNA from M. catarrhalis cells grown in a continuous-flow biofilm system and in the planktonic state. The genes whose expression was most dramatically increased by growth in the biofilm state included those encoding a nitrate reductase, a nitrite reductase, and a nitric oxide reductase. Real-time reverse transcriptase PCR analysis was used to validate these DNA microarray results. These results indicate that growth of M. catarrhalis in a biofilm results in increased expression of gene products which can function not only in energy generation but also in resisting certain elements of the innate immune response.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3