Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers

Author:

Go Eden P.1,Ding Haitao2,Zhang Shijian3,Ringe Rajesh P.4,Nicely Nathan5,Hua David1,Steinbock Robert T.3,Golabek Michael4,Alin James5,Alam S. Munir5,Cupo Albert4,Haynes Barton F.5,Kappes John C.26,Moore John P.4,Sodroski Joseph G.3,Desaire Heather1

Affiliation:

1. Department of Chemistry, University of Kansas, Lawrence, Kansas, USA

2. Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA

3. Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA

4. Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA

5. Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA

6. Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA

Abstract

ABSTRACT HIV-1 envelope glycoprotein (Env) glycosylation is important because individual glycans are components of multiple broadly neutralizing antibody epitopes, while shielding other sites that might otherwise be immunogenic. The glycosylation on Env is influenced by a variety of factors, including the genotype of the protein, the cell line used for its expression, and the details of the construct design. Here, we used a mass spectrometry (MS)-based approach to map the complete glycosylation profile at every site in multiple HIV-1 Env trimers, accomplishing two goals. (i) We determined which glycosylation sites contain conserved glycan profiles across many trimeric Envs. (ii) We identified the variables that impact Env's glycosylation profile at sites with divergent glycosylation. Over half of the gp120 glycosylation sites on 11 different trimeric Envs have a conserved glycan profile, indicating that a native consensus glycosylation profile does indeed exist among trimers. We showed that some soluble gp120s and gp140s exhibit highly divergent glycosylation profiles compared to trimeric Env. We also assessed the impact of several variables on Env glycosylation: truncating the full-length Env; producing Env, instead of the more virologically relevant T lymphocytes, in CHO cells; and purifying Env with different chromatographic platforms, including nickel-nitrilotriacetic acid (Ni-NTA), 2G12, and PGT151 affinity. This report provides the first consensus glycosylation profile of Env trimers, which should serve as a useful benchmark for HIV-1 vaccine developers. This report also defines the sites where glycosylation may be impacted when Env trimers are truncated or produced in CHO cells. IMPORTANCE A protective HIV-1 vaccine will likely include a recombinant version of the viral envelope glycoprotein (Env). Env is highly glycosylated, and yet vaccine developers have lacked guidance on how to assess whether their immunogens have optimal glycosylation. The following important questions are still unanswered. (i) What is the “target” glycosylation profile, when the goal is to generate a natively glycosylated protein? (ii) What variables exert the greatest influence on Env glycosylation? We identified numerous sites on Env where the glycosylation profile does not deviate in 11 different Env trimers, and we investigated the impact on the divergent glycosylation profiles of changing the genotype of the Env sequence, the construct design, the purification method, and the producer cell type. The data presented here give vaccine developers a “glycosylation target” for their immunogens, and they show how protein production variables can impact Env glycosylation.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3