An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence

Author:

Wayne L G1,Hayes L G1

Affiliation:

1. Department of Veterans Affairs Medical Center, Long Beach, California 90822, USA.

Abstract

It was demonstrated previously that abrupt transfer of vigorously aerated cultures of Mycobacterium tuberculosis to anaerobic conditions resulted in their rapid death, but gradual depletion of available O2 permitted expression of increased tolerance to anaerobiosis. Those studies used a model based on adaptation of unagitated bacilli as they settled through a self-generated O2 gradient, but the model did not permit examination of homogeneous populations of bacilli during discrete stages in that adaptation. The present report describes a model based on culture of tubercle bacilli in deep liquid medium with very gentle stirring that keeps them in uniform dispersion while controlling the rate at which O2 is depleted. In this model, at least two stages of nonreplicating persistence were seen. The shift into first stage, designated NRP stage 1, occurred abruptly at a point when the declining dissolved O2 level approached 1% saturation. This microaerophilic stage was characterized by a slow rate of increase in turbidity without a corresponding increase in numbers of CFU or synthesis of DNA. However, a high rate of production of glycine dehydrogenase was initiated and sustained while the bacilli were in this state, and a steady ATP concentration was maintained. When the dissolved O2 content of the culture dropped below about 0.06% saturation, the bacilli shifted down abruptly to an anaerobic stage, designated NRP stage 2, in which no further increase in turbidity was seen and the concentration of glycine dehydrogenase declined markedly. The ability of bacilli in NRP stage 2 to survive anaerobically was dependent in part on having spent sufficient transit time in NRP stage 1. The effects of four antimicrobial agents on the bacilli depended on which of the different physiologic stages the bacilli occupied at a given time and reflected the recognized modes of action of these agents. It is suggested that the ability to shift down into one or both of the two nonreplicating stages, corresponding to microaerophilic and anaerobic persistence, is responsible for the ability of tubercle bacilli to lie dormant in the host for long periods of time, with the capacity to revive and activate disease at a later time. The model described here holds promise as a tool to help clarify events at the molecular level that permit the bacilli to persist under adverse conditions and to resume growth when conditions become favorable. The culture model presented here is also useful for screening drugs for the ability to kill tubercle bacilli in their different stages of nonreplicating persistence.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference16 articles.

1. Amplification and nucleotide sequence of the quinolone resistance-determining region in the gyrA gene of mycobacteria;Cambau E.;FEMS Microbiol. Lett.,1994

2. Quantitative extraction of adenosine triphosphate from cultivable and host-grown microbes: calculation of adenosine triphosphate pools;Dhople A. M.;Appl. Microbiol.,1973

3. Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis;Dickinson J. M.;Am. Rev. Respir. Dis.,1981

4. Mechanism of antimicrobial action of metronidazole;Edwards D. I.;J. Antimicrob. Chemother.,1979

5. Enzyme systems in the mycobacteria. XIII. Glycine dehydrogenase and the glyoxylic acid cycle;Goldman D. S.;Biochim. Biophys. Acta,1962

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3