Identification of a domain in Rck, a product of the Salmonella typhimurium virulence plasmid, required for both serum resistance and cell invasion

Author:

Cirillo D M1,Heffernan E J1,Wu L1,Harwood J1,Fierer J1,Guiney D G1

Affiliation:

1. Department of Medicine, University of California, La Jolla 92032, USA.

Abstract

Rck is encoded on the Salmonella typhimurium virulence plasmid and is a member of a family of related 17- to 19-kDa outer membrane proteins of Enterobacteriaceae, including Ail (Yersinia enterocolitica) and PagC (S. typhimurium). Structural models for these proteins predict eight membrane-spanning domains alternating with hydrophilic inner and outer loops. When expressed in Escherichia coli, Rck and Ail, but not PagC, confer high-level resistance to the bactericidal activity of complement as well as the ability to adhere to and invade mammalian cell lines. To identify functional domains of Rck, we made and screened random mutations in Rck for decreased bioactivity. We found that a single amino acid substitution (glycine to aspartic acid) in the putative third outer loop greatly reduced Rck-mediated serum resistance and eukaryotic cell invasion. We then constructed two chimeric proteins between Rck and PagC. Substitution of the C-terminal half of Rck with the corresponding PagC fragment containing both the third and the fourth outer loops abolishes the Rck-mediated serum resistance and invasion phenotypes. Substitution of Rck with a smaller C-terminal portion of PagC containing the fourth outer loop did not affect the invasive phenotype or serum resistance. These data reveal that the third putative outer membrane loop region is important for the virulence-associated properties of the Rck protein and suggest a similarity between the mechanism of serum resistance and epithelial cell invasion involving the same domain of Rck.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3