Extracellular Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1

Author:

Belchik Sara M.1,Kennedy David W.1,Dohnalkova Alice C.1,Wang Yuanmin2,Sevinc Papatya C.2,Wu Hong1,Lin Yuehe1,Lu H. Peter2,Fredrickson James K.1,Shi Liang1

Affiliation:

1. Pacific Northwest National Laboratory, Richland, Washington 99352

2. Bowling Green State University, Department of Chemistry, Center for Photochemical Sciences, Bowling Green, Ohio 43403

Abstract

ABSTRACT To characterize the roles of cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 in Cr(VI) reduction, the effects of deleting the mtrC and/or omcA gene on Cr(VI) reduction and the cellular locations of reduced Cr(III) precipitates were investigated. Compared to the rate of reduction of Cr(VI) by the wild type (wt), the deletion of mtrC decreased the initial rate of Cr(VI) reduction by 43.5%, while the deletion of omcA or both mtrC and omcA lowered the rate by 53.4% and 68.9%, respectively. In wt cells, Cr(III) precipitates were detected by transmission electron microscopy in the extracellular matrix between the cells, in association with the outer membrane, and inside the cytoplasm. No extracellular matrix-associated Cr(III) precipitates, however, were found in the cytochrome mutant cell suspension. In mutant cells without either MtrC or OmcA, most Cr(III) precipitates were found in association with the outer membrane, while in mutant cells lacking both MtrC and OmcA, most Cr(III) precipitates were found inside the cytoplasm. Cr(III) precipitates were also detected by scanning election microscopy on the surfaces of the wt and mutants without MtrC or OmcA but not on the mutant cells lacking both MtrC and OmcA, demonstrating that the deletion of mtrC and omcA diminishes the extracellular formation of Cr(III) precipitates. Furthermore, purified MtrC and OmcA reduced Cr(VI) with apparent k cat values of 1.2 ± 0.2 (mean ± standard deviation) and 10.2 ± 1 s −1 and K m values of 34.1 ± 4.5 and 41.3 ± 7.9 μM, respectively. Together, these results consistently demonstrate that MtrC and OmcA are the terminal reductases used by S. oneidensis MR-1 for extracellular Cr(VI) reduction where OmcA is a predominant Cr(VI) reductase.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3