Candida albicans resistance to hypochlorous acid

Author:

Douglas Lois M.1,Min Kyunghun1,Konopka James B.1ORCID

Affiliation:

1. Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA

Abstract

ABSTRACT Innate immune cells, especially neutrophils, play key roles in protecting against infection by Candida albicans and other fungal pathogens. A distinct aspect of neutrophils compared to other phagocytes is that they make much higher levels of myeloperoxidase, which converts H 2 O 2 generated during the oxidative burst into highly reactive hypochlorous acid (HOCl). The effects of HOCl on C. albicans are not well defined, so comparative studies were used to show that HOCl kills C. albicans at lower doses than H 2 O 2 and in a manner that correlates with permeabilization of the plasma membrane. Mutants with defects in plasma membrane organization and antioxidant pathways showed differential sensitivity to these oxidants, consistent with their distinct chemical properties. Transcriptional responses to HOCl and H 2 O 2 were also quite different. Although they induced a common set of genes, most differentially regulated genes were unique. Testing the roles of genes that were predicted to be important for counteracting the types of thiol oxidation that are preferentially caused by HOCl showed that Mxr1 (methionine-S-sulfoxide reductase), Srx1 (sulfiredoxin that reduces cysteine-sulfinic acid groups), and Trx1 (thioredoxin that acts to reduce disulfide bonds) all promoted resistance to HOCl. Altogether, these results suggest that an effective way to help promote the killing of C. albicans by neutrophils would be to perturb the C. albicans plasma membrane, rather than targeting one specific antioxidant pathway. IMPORTANCE Hypochlorous acid (HOCl), commonly known as bleach, is generated during the respiratory burst by phagocytes and is a key weapon used to attack Candida albicans and other microbial pathogens. However, the effects of hypochlorous acid on C. albicans have been less well studied than H 2 O 2 , a different type of oxidant produced by phagocytes. HOCl kills C. albicans more effectively than H 2 O 2 and results in disruption of the plasma membrane. HOCl induced a very different transcriptional response than H 2 O 2 , and there were significant differences in the susceptibility of mutant strains of C. albicans to these oxidants. Altogether, these results indicate that HOCl has distinct effects on cells that could be targeted in novel therapeutic strategies to enhance the killing of C. albicans and other pathogens.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3