The glycoprotein 5 of porcine reproductive and respiratory syndrome virus stimulates mitochondrial ROS to facilitate viral replication

Author:

Zhang Shuang123,Zeng Lei123,Su Bing-Qian123,Yang Guo-Yu234,Wang Jiang1235ORCID,Ming Sheng-Li123ORCID,Chu Bei-Bei12345ORCID

Affiliation:

1. College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China

2. Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China

3. Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, China

4. International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China

5. Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China

Abstract

ABSTRACT Viruses have evolved sophisticated mechanisms to manipulate host cell organelles to serve as niches for persistence and proliferation. In the present study, we aimed to investigate the role of cellular organelles in the replication of porcine reproductive and respiratory syndrome virus (PRRSV). We found that the morphology of mitochondria and the endoplasmic reticulum (ER) were both altered, and the contact between these two organelles was enhanced during PRRSV infection. By the overexpression of PRRSV-encoded open reading frames, we identified that only glycoprotein 5 (GP5) was essential for ER-mitochondria contact. Further investigation revealed that GP5 interacted with the ER inositol 1,4,5-triphosphate receptor (IP3R) and the mitochondrial voltage-dependent anion channel (VDAC1) to promote the Ca 2+ efflux from ER into mitochondria. Excessive mitochondrial Ca 2+ uptake resulted in mitochondrial dysfunction and substantial mitochondrial reactive oxygen species (mROS) production. Elevated mROS activated autophagy through the AMPK/mROR/ULK1 axis to facilitate PRRSV replication. GP5-induced mROS also triggered the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome. Inhibition of autophagy augmented NLRP3 inflammasome activation and exhibited an anti-PRRSV effect, suggesting autophagy counteracted the NLRP3-mediated innate immune response. Overall, our findings highlighted the importance of cellular organelles in virus-host interactions and provided new insights into the complex interplay between virus replication and innate immune responses. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) presents a significant economic concern for the global swine industry due to its connection to serious production losses and increased mortality rates. There is currently no specific treatment for PRRSV. Previously, we had uncovered that PRRSV-activated lipophagy to facilitate viral replication. However, the precise mechanism that PRRSV used to trigger autophagy remained unclear. Here, we found that PRRSV GP5 enhanced mitochondrial Ca 2+ uptake from ER by promoting ER-mitochondria contact, resulting in mROS release. Elevated mROS induced autophagy, which alleviated NLRP3 inflammasome activation for optimal viral replication. Our study shed light on a novel mechanism revealing how PRRSV exploits mROS to facilitate viral replication.

Funder

MOST | National Natural Science Foundation of China

MOST | National Key Research and Development Program of China

the doctoral foundation of china

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3