Systematic functional analysis of the Com pilus in Streptococcus sanguinis : a minimalistic type 4 filament dedicated to DNA uptake in monoderm bacteria

Author:

Mom Jeremy1,Chouikha Iman1,Valette Odile1,Pieulle Laetitia1,Pelicic Vladimir1ORCID

Affiliation:

1. Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS (UMR 7283), Institut de Microbiologie de la Méditerranée, Marseille, France

Abstract

ABSTRACT Type 4 filaments (T4F) are a superfamily of versatile nanomachines, ubiquitous in prokaryotes, which use conserved multi-protein machineries to assemble and operate filamentous polymers of type 4 pilins. In the best-studied T4F, these machineries are complex, which has posed challenges to understanding the mechanisms of filament assembly and their multiple functions. Here, we report the systematic functional analysis of the Com pilus, a widespread T4F mediating DNA uptake during natural transformation in monoderm bacteria. Using Streptococcus sanguinis , we show that Com pili are bona fide type 4 pili (T4P), representing a new pilus sub-type. We show that with only eight components necessary for pilus assembly and functioning—all “core” proteins universally conserved in this superfamily—the Com pilus epitomizes a minimalistic T4F. We further demonstrate that core T4F components are sufficient for filament assembly. Paradoxically, akin to the more elaborate T4F, the Com pilus contains four minor pilins forming a complex, probably tip-located. Our results have global implications for T4F and make the Com pilus a model for elucidating fundamental processes underpinning filament assembly. IMPORTANCE Type 4 filaments (T4F) are nanomachines ubiquitous in prokaryotes, centered on filamentous polymers of type 4 pilins. T4F are exceptionally versatile and widespread virulence factors in bacterial pathogens. The mechanisms of filament assembly and the many functions they facilitate remain poorly understood because of the complexity of T4F machineries. This hinders the development of anti-T4F drugs. The significance of our research lies in characterizing the simplest known T4F—the Com pilus that mediates DNA uptake in competent monoderm bacteria—and showing that four protein components universally conserved in T4F are sufficient for filament assembly. The Com pilus becomes a model for elucidating the mechanisms of T4F assembly.

Funder

Agence Nationale de la Recherche

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3