Noninhibitory binding of human interleukin-2-activated natural killer cells to the germ tube forms of Candida albicans

Author:

Arancia G1,Molinari A1,Crateri P1,Stringaro A1,Ramoni C1,Dupuis M L1,Gomez M J1,Torosantucci A1,Cassone A1

Affiliation:

1. Department of Ultrastructures, Istituto Superiore di Sanità, Rome, Italy.

Abstract

During incubation in vitro with yeast or germ tube forms of Candida albicans, only 2 to 6% of freshly isolated human natural killer (NK) cells (> 85% CD16+, CD56+, CD3-; < 15% CD3+; cytolytic for the NK-susceptible target K562 but not for the NK-resistant target DAUDI), were seen to interact with the fungal cells. As seen under the electron microscope, the contact area had a limited extent and was narrow, and neither the surface nor the intracytoplasmic organization of the NK cell was altered. In contrast, more than 30% of interleukin-2-activated NK (LAK) cells (> 96% CD16+, CD56+, CD3-; 1.5% CD3+; cytolytic for both K562 and DAUDI targets) interacted closely with the fungus. This interaction was particularly extensive with the surface of the fungal germ tube that was intimately enveloped by villous protrusions from the lymphocyte surface. The fungus-interacting LAK cell also showed a remarkable redistribution of surface microvilli and polarization of cytoplasmic organelles, such as the Golgi apparatus, centrioles, and granules, toward the area of fungal contact. Together with the elevated cytolytic potential against the K562 and DAUDI targets, all the morphological data suggested the presence of a potentially active lytic machinery in the fungus-interacting LAK cell. Nonetheless, two independent assays for anticandidal activity did not show consistent killing or fungal growth inhibition by either fresh NK or LAK cells. While offering direct evidence of the strong interaction between human LAK cells and the germ tubes, precursors of tissue-invasive hyphal forms of C. albicans, our observations also suggest that this interaction may not be sufficient to kill the fungus or arrest its growth.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3