Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis

Author:

Mengin-Lecreulx D1,van Heijenoort J1

Affiliation:

1. Laboratoire des Enveloppes Bactériennes et des Peptides, Unité de Recherche, Associée 1131 du Centre National de la Recherche Scientifique, Université Paris-Sud, Orsay, France.

Abstract

The glmU gene product of Escherichia coli was recently identified as the N-acetylglucosamine-1-phosphate uridyltransferase activity which catalyzes the formation of UDP-N-acetylglucosamine, an essential precursor for cell wall peptidoglycan and lipopolysaccharide biosyntheses (D. Mengin-Lecreulx and J. van Heijenoort, J. Bacteriol. 175:6150-6157, 1993). Evidence that the purified GlmU protein is in fact a bifunctional enzyme which also catalyzes acetylation of glucosamine-1-phosphate, the preceding step in the same pathway, is now provided. Kinetic parameters of both reactions were investigated, indicating in particular that the acetyltransferase activity of the enzyme is fivefold higher than its uridyltransferase activity. In contrast to the uridyltransferase activity, which is quite stable and insensitive to thiol reagents, the acetyltransferase activity was rapidly lost when the enzyme was stored in the absence of reducing thiols or acetyl coenzyme A or was treated with thiol-alkylating agents, suggesting the presence of at least one essential cysteine residue in or near the active site. The acetyltransferase activity is greatly inhibited by its reaction product N-acetylglucosamine-1-phosphate and, interestingly, also by UDP-N-acetylmuramic acid, which is one of the first precursors specific for the peptidoglycan pathway. The detection in crude cell extracts of a phosphoglucosamine mutase activity finally confirms that the route from glucosamine-6-phosphate to UDP-N-acetylglucosamine occurs via glucosamine-1-phosphate in bacteria.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 185 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3