Identification of the lipopolysaccharide core region as the receptor site for a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa

Author:

Yokota S1,Hayashi T1,Matsumoto H1

Affiliation:

1. Sumitomo Pharmaceuticals Research Center, Osaka, Japan.

Abstract

A temperate phage, phi CTX, is a cytotoxin-converting phage of Pseudomonas aeruginosa. In this study, we characterized the lipopolysaccharide (LPS) structures of phi CTX-resistant mutants derived from phi CTX-sensitive strains. phi CTX infectivity was neutralized by LPS preparations derived from sensitive strains but not by those from resistant strains. phi CTX-resistant mutants had lower-molecular-weight rough (R)-type LPS than the parental strains and lacked the reactivity of some anti-LPS core monoclonal antibodies. Some LPS core components were lacking or significantly decreased in the resistant mutants. These results suggested that a receptor site of the cytotoxin-converting phage phi CTX was the LPS core region and that especially L-rhamnose and D-glucose residues in the outer core were involved in phage binding. The host range of phi CTX was nearly O-serotype dependent, probably because of the diversity of the LPS core structure among P. aeruginosa strains. phi CTX bound to most strains of Homma serotypes A, G, and I but not to strains of serotypes B and E. Furthermore, we found that a genetic locus specifying phi CTX sensitivity (and consequently participating in the biosynthesis of part of the LPS core) existed in or near the locus participating in the determination of O-serotype specificity (somA), which has been mapped between leu-10 and eda-9001. phi CTX, as well as anti-LPS core monoclonal antibodies, will be a good tool for structural characterization of the P. aeruginosa LPS core region.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3