Affiliation:
1. Department of Microbiology, School of Medicine, SUNY Stony Brook 11794-5222.
Abstract
Entry into intestinal epithelial cells is an essential step in the pathogenesis of Salmonella infections. Our laboratory has previously identified a genetic locus, inv, that is necessary for efficient entry of Salmonella typhimurium into cultured epithelial cells. We have carried out a molecular and functional analysis of invB and invC, two members of this locus. The nucleotide sequence of these genes indicated that invB and invC encode polypeptides with molecular masses of 15 and 47 kDa, respectively. Polypeptides with the predicted sizes were observed when these genes were expressed under the control of a T7 promoter. Strains carrying nonpolar mutations in these genes were constructed, and their phenotypes were examined in a variety of assays. A mutation in invC rendered S. typhimurium defective in their ability to enter cultured epithelial cells, while mutations in invB did not. Comparison of the predicted sequences of InvB and InvC with translated sequences in GenBank revealed that these polypeptides are similar to the Shigella spp. proteins Spa15 and Spa47, which are involved in the surface presentation of the invasion protein antigens (Ipa) of these organisms. In addition, InvC showed significant similarity to a protein family which shares sequence homology with the catalytic beta subunit of the F0F1 ATPase from a number of microorganisms. Consistent with this finding, purified preparations of InvC showed significant ATPase activity. Site-directed mutagenesis of a residue essential for the catalytical function of this family of proteins resulted in a protein devoid of ATPase activity and unable to complement an invC mutant of S. typhimurium. These results suggest that InvC may energize the protein export apparatus encoded in the inv locus which is required for the surface presentation of determinants needed for the entry of Salmonella species into mammalian cells. The role of InvB in this process remains uncertain.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference63 articles.
1. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions and an ATPase-like polypeptide;Albertini A. M.;J. Bacteriol.,1991
2. MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasion, is homologous to YscJ, a secretion factor of the Yersinia Yop proteins;Alloui A.;J. Bacteriol.,1992
3. MxiD: an outer membrane protein necessary for the secretion of the Shigella flexneri Ipa invasins;Alloui A.;Mol. Microbiol.,1993
4. Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells;Altmeyer R M;Mol. Microbiol.,1993
5. mxiA of Shigella flexneri 2a, which facilitates export of invasion plasmid antigens, encodes a homolog of the low-calcium-response protein, LcrD, of Yersinia pestis;Andrews G. P.;Infect. Immun.,1992
Cited by
155 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献