Regulation of tryptophan biosynthesis in Methanobacterium thermoautotrophicum Marburg

Author:

Gast D A1,Jenal U1,Wasserfallen A1,Leisinger T1

Affiliation:

1. Mikrobiologisches Institut, Swiss Federal Institute of Technology, ETH-Zentrum, Zürich.

Abstract

A tryptophan-auxotrophic mutant of the archaeon Methanobacterium thermoautotrophicum Marburg was grown with growth-promoting and growth-limiting concentrations of tryptophan. The specific activities of anthranilate synthase (TrpEG) and tryptophan synthase (TrpB) increased 30- to 40-fold in tryptophan-starved cells. Levels of trpE-specific and trpD-specific mRNAs (transcripts of the first and the last genes, respectively, of the M. thermoautotrophicum Marburg trp gene cluster) increased about 10-fold upon starvation for tryptophan. Thus, the expression of the trp genes appears to be regulated primarily at the level of transcription. These data support transcription of trp genes as an operon and support a regulatory model involving a repressor. Anthranilate synthase was feedback inhibited by L-tryptophan, with a Ki of 3.0 microM. In a leucine-auxotrophic mutant starved for L-leucine, the level of alpha-isopropylmalate synthase (LeuA) was 10-fold higher than in cells grown with L-leucine. In addition to the finding of specific regulation of gene expression by the end products of their respective pathways, it was found that the levels of anthranilate synthase and alpha-isopropylmalate synthase were reduced upon growth in the presence of amino acids of other families, such as L-alanine, L-proline, or L-arginine. Conversely, starvation for tryptophan caused a slight elevation of alpha-isopropylmalate synthase and starvation for leucine caused a significant increase of anthranilate synthase and tryptophan synthase specific activities. The latter effect was also observed at the level of trp-specific mRNA and is reminiscent of general amino acid control.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference36 articles.

1. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl. 1991. Current protocols in molecular biology vol. 1 p. 4.4.3-4.4.4. Greene Publishing Associates New York.

2. Studies of the GTPase domain of archaebacterial ribosomes;Beauclerk A. A. D.;Eur. J. Biochem.,1985

3. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding;Bradford M. M.;Anal. Biochem.,1976

4. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway;Braus G. H.;Microbiol. Rev.,1991

5. Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhimurium;Caligiuri M.;J. Biol. Chem.,1991

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3