Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH

Author:

Sturr M G1,Guffanti A A1,Krulwich T A1

Affiliation:

1. Department of Biochemistry, Mount Sinai School of Medicine, City University of New York, New York 10029.

Abstract

The effect of external pH on growth of alkaliphilic Bacillus firmus OF4 was studied in steady-state, pH-controlled cultures at various pH values. Generation times of 54 and 38 min were observed at external pH values of 7.5 and 10.6, respectively. At more alkaline pH values, generation times increased, reaching 690 min at pH 11.4; this was approximately the upper limit of pH for growth with doubling times below 12 h. Decreasing growth rates above pH 11 correlated with an apparent decrease in the ability to tightly regulate cytoplasmic pH and with the appearance of chains of cells. Whereas the cytoplasmic pH was maintained at pH 8.3 or below up to external pH values of 10.8, there was an increase up to pH 8.9 and 9.6 as the growth pH was increased to 11.2 and 11.4, respectively. Both the transmembrane electrical potential and the phosphorylation potential (delta Gp) generally increased over the total pH range, except for a modest fall-off in the delta Gp at pH 11.4. The capacity for pH homeostasis rather than that for oxidative phosphorylation first appeared to become limiting for growth at the high edge of the pH range. No cytoplasmic or membrane-associated organelles were observed at any growth pH, confirming earlier conclusions that structural sequestration of oxidative phosphorylation was not used to resolve the discordance between the total electrochemical proton gradient (delta p) and the delta Gp as the external pH is raised. Were a strictly bulk chemiosmotic coupling mechanism to account for oxidative phosphorylation over the entire range, the deltaGp/deltap ration (which would equal the H+/ATP ratio) would rise from about 3 at pH 7.5 to 13 at pH 11.2, dropping to 7 at pH 11.4 only because of the rise in cytoplasmic pH relative to other parameters. Moreover, the molar growth yields on malate were higher at pH 10.5 than at pH 7.5, indicating greater rather than lesser efficiency in the use of substrate at the more alkaline pH.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference34 articles.

1. Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus;Clejan S.;J. Bacteriol.,1986

2. Drew S. W. 1981. Liquid culture p. 151-178. In P. Gerhardt R. G. E. Murray R. N. Costilow E. W. Nester W. A. Wood N. R. Krieg and G. B. Phillips (ed.) Manual of methods for general bacteriology. American Society for Microbiology Washington D.C.

3. Facultative alkaliphiles lack fatty acid desaturase activity and lose the ability to grow at near neutral pH when supplemented with an unsaturated fatty acid;Dunkley E. A.;J. Bacteriol.,1991

4. .Guffanti A. Unpublished data.

5. Isolation and characterization of new facultatively alkalophilic strains of Bacillus;Guffanti A. A.;J. Bacteriol.,1986

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3