Affiliation:
1. W. M. Keck Laboratories 138-78, California Institute of Technology, Pasadena 91125.
Abstract
The organization of genes involved in utilization of methylamine (mau genes) was studied in Methylophilus methylotrophus W3A1. The strain used was a nonmucoid variant termed NS (nonslimy). The original mucoid strain was shown to be identical to the NS strains on the basis of chromosomal digest and hybridization patterns. An 8-kb PstI fragment of the chromosome from M. methylotrophus W3A1-NS encoding the mau genes was cloned and a 6,533-bp region was sequenced. Eight open reading frames were found inside the sequenced area. On the basis of a high level of sequence identity with the Mau polypeptides from Methylobacterium extorquens AM1, the eight open reading frames were identified as mauFBEDAGLM. The mau gene cluster from M. methylotrophus W3A1 is missing two genes, mauC (amicyanin) and mauJ (whose function is unknown), which have been found between mauA and mauG in all studied mau gene clusters. Mau polypeptides sequenced so far from five different bacteria show considerable identity. A mauA mutant of M. methylotrophus W3A1-NS that was constructed lost the ability to grow on all amines as sources of nitrogen but still retained the ability to grow on trimethylamine as a source of carbon. Thus, unlike M. extorquens AM1 and Methylobacillus flagellatum KT, M. methylotrophus W3A1-NS does not have an additional methylamine dehydrogenase system for amine oxidation. Using a promoter-probe vector, we identified a promoter upstream of mauF and used it to construct a potential expression vector, pAYC229.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献