Nucleoid partitioning and the division plane in Escherichia coli

Author:

Woldringh C L1,Zaritsky A1,Grover N B1

Affiliation:

1. Section of Molecular Cytology, University of Amsterdam, The Netherlands.

Abstract

Escherichia coli nucleoids were visualized after the DNA of OsO4-fixed but hydrated cells was stained with the fluorochrome DAPI (4',6-diamidino-2-phenylindole dihydrochloride hydrate). In slowly growing cells, the nucleoids are rod shaped and seem to move along the major cell axis, whereas in rapidly growing, wider cells they consist of two- to four-lobed structures that often appear to advance along axes lying perpendicular or oblique to the major axis of the cell. To test the idea that the increase in cell diameter following nutritional shift-up is caused by the increased amount of DNA in the nucleoid, the cells were subjected to DNA synthesis inhibition. In the absence of DNA replication, the nucleoids continued to move in the growing filaments and were pulled apart into small domains along the length of the cell. When these cells were then transferred to a richer medium, their diameters increased, especially in the region enclosing the nucleoid. It thus appears that the nucleoid motive force does not depend on DNA synthesis and that cell diameter is determined not by the amount of DNA per chromosome but rather by the synthetic activity surrounding the nucleoid. Under the non-steady-state but balanced growth conditions induced by thymine limitation, nucleoids become separated into small lobules, often lying in asymmetric configurations along the cell periphery, and oblique and asymmetric division planes occur in more than half of the constricting cells. We suggest that such irregular DNA movement affects both the angle of the division plane and its position.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference55 articles.

1. Branched Escherichia coli cells;Akerlund T.;Mol. Microbiol.,1993

2. Experiments on chromosome separation and positioning in Escherichia coli;Begg K.;New Biol.,1991

3. FtsZ ring structure associated with division in Escherichia coli;Bi E.;Nature (London),1991

4. Isolation and characterization of ftsZ alleles that affect septal morphology;Bi E.;J. Bacteriol.,1992

5. Coralline shape of the bacterial nucleoid after cryofixation;Bohrmann B.;J. Bacteriol.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3