Affiliation:
1. Centre de Recherche en Microbiologie Appliquée, Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada.
Abstract
Wild-type Streptomyces lividans produced the three xylanases (XlnA, XlnB, and XlnC) when xylan, xylan hydrolysates obtained by the action of XlnA, XlnB, and XlnC, or purified small xylo-oligosaccharides (xylobiose [X2], xylotriose [X3], xylotetraose [X4], and xylopentaose [X5]) were used as the carbon source. The three xylanase genes of S. lividans (xlnA, xlnB, and xlnC) were disrupted by using vectors that integrate into the respective genes. Disruption of one or more of the xln genes resulted in reduced growth rates and reduced total xylanase activities when the strain was grown in xylan. The greatest effect was observed when xlnA was disrupted. In medium containing xylan, disruption of xlnA did not affect expression of xlnB and xlnC; disruption of xlnB did not affect expression of xlnA but affected expression of xlnC; and disruption of xlnC did not affect expression of xlnA but affected expression of xlnB. A fraction of XlnB or XlnC hydrolytic products (those with a degree of polymerization greater than 11 [X11]) was found to stimulate expression of xlnB and xlnC in strains disrupted in xlnC and xlnB, respectively, whereas lower-molecular-weight fractions as well as purified small xylo-oligosaccharides did not. The stimulating molecule(s) lost its effect when it was hydrolyzed further by XlnA. A mechanism of transglycosylation reactions by the S. lividans xylanases is postulated to be involved in the regulation of xln genes.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献