Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism

Author:

Turner R J1,Lu Y1,Switzer R L1

Affiliation:

1. Department of Biochemistry, University of Illinois, Urbana 61801.

Abstract

A complete transcript of the Bacillus subtilis pyr operon contains the following elements in 5' to 3' order: a 151-nucleotide (nt) untranslated leader; pyrR, encoding a 20-kDa protein; a 173-nt intercistronic region; pyrP, encoding a 46-kDa protein; a 145-nt intercistronic region; and eight overlapping cistrons encoding all of the six enzymes for de novo pyrimidine biosynthesis. Transcription is controlled by the availability of pyrimidines via an attenuation mechanism. There are three transcription terminators within the operon, each of which is preceded by another stem-loop structure, the antiterminator, whose formation would prevent formation of the terminator stem-loop. These are located in the leader, the pyrR-pyrP intercistronic region, and the pyrP-pyrB intercistronic region. Northern (RNA) blot analysis has identified transcripts of lengths which coincide with termination at these proposed attenuation sites and whose relative abundances vary in the expected pyrimidine-dependent manner. Each antiterminator contains a 50-base conserved sequence in its promoter-proximal half. Various transcriptional fusions of the pyr promoter and surrounding sequences to promoterless reporter genes support an attenuation mechanism whereby when pyrimidines are abundant, the PyrR protein binds to the conserved sequence in the pyr mRNA and disrupts the antiterminator, permitting terminator hairpin formation and promoting transcription termination. Deletion of pyrR from the chromosome resulted in the constitutive, elevated expression of aspartate transcarbamylase, which is encoded by pyrB, the third gene in the operon. Complementation of an E. coli upp mutant, as well as direct enzymatic assay, has demonstrated that pyrR also confers uracil phosphoribosyltransferase activity. Analysis of pyrR and upp deletion mutants demonstrated that upp, not pyrR, encodes the quantitatively important uracil phosphoribosyltransferase activity. The pyrP gene probably encodes an integral membrane uracil permease.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference54 articles.

1. Andersen P. S. 1991. The uracil transport system of Escherichia coli K12. Ph.D. thesis. University of Copenhagen Copenhagen Denmark.

2. Characterization of the upp gene encoding uracil phosphoribosyltransferase in Escherichia coli K12;Andersen P. S.;Eur. J. Biochem.,1992

3. Regulation of pyrimidine nucleotide biosynthesis in cytidine deaminase-negative mutants of Bacillus subtilis;Asahi S.;Agric. Biol. Chem.,1989

4. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein;Babitzke P.;Proc. Natl. Acad. Sci. USA,1993

5. Regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase inactivation in vivo;Bernlohr D. A.;J. Bacteriol.,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3