Biotransformation of benzothiophene by isopropylbenzene-degrading bacteria

Author:

Eaton R W1,Nitterauer J D1

Affiliation:

1. Environmental Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561.

Abstract

Isopropylbenzene-degrading bacteria, including Pseudomonas putida RE204, transform benzothiophene to a mixture of compounds. Induced strain RE204 and a number of its Tn5 mutant derivatives were used to accumulate these compounds and their precursors from benzothiophene. These metabolites were subsequently identified by 1H and 13C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. When strain RE204 was incubated with benzothiophene, it produced a bright yellow compound, identified as trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate, formed by the rearrangement of cis-4-(3-keto-2,3-dihydrothienyl)-2-hydroxybuta-2,4-dieno ate, the product of 3-isopropylcatechol-2,3-dioxygenase-catalyzed ring cleavage of 4,5-dihydroxybenzothiophene, as well as 2-mercaptophenylglyoxalate and 2'-mercaptomandelaldehyde. A dihydrodiol dehydrogenase-deficient mutant, strain RE213, converted benzothiophene to cis-4,5-dihydroxy-4,5-dihydrobenzothiophene and 2'-mercaptomandelaldehyde; neither trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate nor 2-mercaptophenylglyoxalate was detected. Cell extracts of strain RE204 catalyzed the conversion of cis-4,5-dihydroxy-4,5-dihydrobenzothiophene to trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate in the presence of NAD+. Under the same conditions, extracts of the 3-isopropylcatechol-2,3-dioxygenase-deficient mutant RE215 acted on cis-4,5-dihydroxy-4,5-dihydrobenzothiophene, forming 4,5-dihydroxybenzothiophene. These data indicate that oxidation of benzothiophene by strain RE204 is initiated at either ring. Transformation initiated at the 4,5 position on the benzene ring proceeds by three enzyme-catalyzed reactions through ring cleavage. The sequence of events that occurs following attack at the 2,3 position of the thiophene ring is less clear, but it is proposed that 2,3 dioxygenation yields a product that is both a cis-dihydrodiol and a thiohemiacetal, which as a result of this structure undergoes two competing reactions: either spontaneous opening of the ring, yielding 2'-mercaptomandelaldehyde, or oxidation by the dihydrodiol dehydrogenase to another thiohemiacetal, 2-hydroxy-3-oxo-2,3-dihydrobenzothiophene, which is not a substrate for the ring cleavage dioxygenase but which spontaneously opens to form 2-mercaptophenylglyoxaldehyde and subsequently 2-mercaptophenylglyoxalate. The yellow product, trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate, is a structural analog of trans-o-hydroxybenzylidenepyruvate, an intermediate of the naphthalene catabolic pathway; extracts of recombinant bacteria containing trans-o-hydroxybenzylidenepyruvate hydratase-aldolase catalyzed the conversion of trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate to 3-hydroxythiophene-2-carboxaldehyde, which could then be further acted on, in the presence of NAD+, by extracts of recombinant bacteria containing the subsequent enzyme of the naphthalene pathway, salicylaldehyde dehydrogenase.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference43 articles.

1. The degradation of 2-thiophenecarboxylic acid by a Flavobacterium species;Amphlett M. J.;Biochem. J.,1969

2. Some observations on biodegradation of pollutants in aquatic systems;Bohonos N.;Jpn. J. Antibiot.,1977

3. Biotransformation of unsaturated heterocyclic rings by Pseudomonas putida to yield cis-diols;Boyd D. R.;J. Chem. Soc. Chem. Commun., p.,1993

4. The preparation of some thiochroman-3-ones and derivatives;Clark P. D.;Can. J. Chem.,1982

5. Identification of benzo[b]thiophene and its 2- and 3-methyl homologs in Wasson, Texas, crude oil;Coleman H. J.;J. Chem. Eng. Data,1961

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3