Stoichiometry of binding of CysB to the cysJIH, cysK, and cysP promoter regions of Salmonella typhimurium

Author:

Hryniewicz M M1,Kredich N M1

Affiliation:

1. Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

CysB is a member of the LysR family of transcriptional activators and regulates genes of the cysteine regulon in Salmonella typhimurium and Escherichia coli. CysB binds to specific sites just upstream of the -35 regions of the cysJIH, cysK, and cysP promoters, where, in the presence of N-acetyl-L-serine, it stimulates transcription initiation. The cysK and cysP promoters contain additional binding sites, and we have proposed that CysB bends these promoters by binding to adjacent sites. N-Acetyl-L-serine is thought to decrease the magnitude of such bending. Since stoichiometric data bearing on this model have been lacking, we analyzed complexes in gel mobility shift experiments with 35S-labeled CysB and 32P-labeled promoter fragments. CysB was found to bind as a tetramer, and N-acetyl-L-serine increased the electrophoretic mobilities of one-protein complexes of the multibinding site cysK and cysP promoters without changing their stoichiometry, indicating that a single CysB tetramer can bend these promoters and that N-acetyl-L-serine diminishes such bending. Bend angles for both promoters were calculated to be 100 and 50 degrees in the absence and presence of N-acetyl-L-serine. N-Acetyl-L-serine affected neither the stoichiometry nor the electrophoretic mobility of cysJIH promoter complexes, which are not known to contain bent DNA. DNA bending may be a mechanism for sequestering CysB at certain promoter sites by increasing their affinity for this protein in the absence of N-acetyl-L-serine.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference65 articles.

1. Deletion analysis of a complex promoter for a developmentally regulated gene from Bacillus subtilis;Banner C. D. B.;J. Mol. Biol.,1983

2. Kinetic studies of the modulation of ada promoter activity by upstream elements;Bertrand-Burggraf E.;EMBO J.,1990

3. Ultraviolet absorption spectra of adenosine-5'-triphosphate and related 5'-ribonucleotides;Bock R. M.;Arch. Biochem. Biophys.,1956

4. Conformational change in the DNA associated with an unusual promoter mutation in a tRNA operon of Salmonella;Bossi L.;Cell,1984

5. Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli;Bracco L.;EMBO J.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3