Roles of catabolite activator protein sites centered at -81.5 and -41.5 in the activation of the Klebsiella aerogenes histidine utilization operon hutUH

Author:

Osuna R1,Janes B K1,Bender R A1

Affiliation:

1. Department of Biology, University of Michigan, Ann Arbor 48109-1048.

Abstract

The Klebsiella aerogenes hutUH operon is preceded by a promoter region, hut(P), that contains two divergent promoters (hutUp and Pc) which overlap and are alternately expressed. In the absence of the catabolite gene activator protein-cyclic AMP (CAP-cAMP) complex, Pc is predominantly expressed while hutUp is largely repressed. CAP-cAMP has the dual effect of repressing transcription from Pc while simultaneously activating transcription from hutUp. DNA deletion mutations in this region were used to identify DNA sequences required for transcription of these two promoters. We showed that inactivation of Pc by DNA deletion did not result in activation of hutUp in vitro or in vivo. In addition, Escherichia coli CAP mutants that are known to bind and bend DNA normally but are unable to activate various CAP-dependent promoters were also unable to activate hutUp in vivo. These results invalidate an indirect activation model by which CAP-mediated repression of Pc in itself would led to activation of hutUp. Gel retardation asays with various deletion mutations of hut(P) and DNase I protection analyses revealed a high-affinity CAP binding site (CAP site 1) centered at -81.5 relative to the hutUp start of transcription and a second low-affinity CAP site (CAP site 2) centered at about -41.5. CAP site 1 is essential for activation of hutUp. Although CAP site 2 by itself is unable to activate hutUp in vivo under catabolite-activating conditions, it appears to be required for maximal transcription from a site centered at -41.5, does not activate hutUp suggests that the role of CAP-cAMP at the weaker CAP site may be different from that of other promoters containing a similarly positioned site. We propose that CAP directly stimulates the activity of RNA polymerase at hutUp and that this reaction is completely dependent on a naturally occurring CAP site centered at -81.5 and also involves a second CAP site centered at about -41.5 for maximal activation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3