Effects of Specific Inhibitors on Anammox and Denitrification in Marine Sediments

Author:

Jensen Marlene Mark1,Thamdrup Bo1,Dalsgaard Tage2

Affiliation:

1. Nordic Center for Earth Evolution, Institute of Biology, University of Southern Denmark, DK-5230 Odense M

2. National Environmental Research Institute, DK-8600 Silkeborg, Denmark

Abstract

ABSTRACT The effects of three metabolic inhibitors (acetylene, methanol, and allylthiourea [ATU]) on the pathways of N 2 production were investigated by using short anoxic incubations of marine sediment with a 15 N isotope technique. Acetylene inhibited ammonium oxidation through the anammox pathway as the oxidation rate decreased exponentially with increasing acetylene concentration; the rate decay constant was 0.10 ± 0.02 μM −1 , and there was 95% inhibition at ∼30 μM. Nitrous oxide reduction, the final step of denitrification, was not sensitive to acetylene concentrations below 10 μM. However, nitrous oxide reduction was inhibited by higher concentrations, and the sensitivity was approximately one-half the sensitivity of anammox (decay constant, 0.049 ± 0.004 μM −1 ; 95% inhibition at ∼70 μM). Methanol specifically inhibited anammox with a decay constant of 0.79 ± 0.12 mM −1 , and thus 3 to 4 mM methanol was required for nearly complete inhibition. This level of methanol stimulated denitrification by ∼50%. ATU did not have marked effects on the rates of anammox and denitrification. The profile of inhibitor effects on anammox agreed with the results of studies of the process in wastewater bioreactors, which confirmed the similarity between the anammox bacteria in bioreactors and natural environments. Acetylene and methanol can be used to separate anammox and denitrification, but the effects of these compounds on nitrification limits their use in studies of these processes in systems where nitrification is an important source of nitrate. The observed differential effects of acetylene and methanol on anammox and denitrification support our current understanding of the two main pathways of N 2 production in marine sediments and the use of 15 N isotope methods for their quantification.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3