Second-Site Mutation Outside of the U S 10-12 Domain of Δγ 1 34.5 Herpes Simplex Virus 1 Recombinant Blocks the Shutoff of Protein Synthesis Induced by Activated Protein Kinase R and Partially Restores Neurovirulence

Author:

Cassady Kevin A.12,Gross Martin3,Gillespie G. Yancey4,Roizman Bernard1

Affiliation:

1. The Marjorie B. Kovler Viral Oncology Laboratories

2. Division of Clinical Virology

3. Department of Pathology, The University of Chicago, Chicago, Illinois 60637

4. Division of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama 35233

Abstract

ABSTRACT Earlier studies have shown that herpes simplex virus type 1 (HSV-1) activated protein kinase R (PKR) but that the product of the product of the γ 1 34.5 gene binds and redirects the host phosphatase 1 to dephosphorylate the α subunit of eukaryotic translation initiation factor 2 (eIF-2α). In consequence, the γ 1 34.5 gene product averts the threatened shutoff of protein synthesis caused by activated PKR. Serial passages of Δγ 1 34.5 mutants in human cells led to isolation of two classes of second-site, compensatory mutants. The first, reported earlier, resulted from the juxtaposition of the α promoter of the U S 12 gene to the coding sequence of the U S 11 gene. The mutant blocks the phosphorylation of eIF-2α but does not restore the virulence phenotype of the wild-type virus. We report another class of second-site, compensatory mutants that do not map to the U S 10-12 domain of the HSV-1 genome. All mutants in this series exhibit sustained late protein synthesis, higher yields in human cells, and reduced phosphorylation of PKR that appears to be phosphatase dependent. Specific dephosphorylation of eIF-2α was not demonstrable. At least one mutant in this series exhibited a partial restoration of the virulence phenotype characteristic of the wild-type virus phenotype. The results suggest that the second-site mutations reflect activation of fossilized functions designed to block the interferon response pathways in cells infected with the progenitor of present HSV.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3