Identification of osmoresponsive genes in Escherichia coli: evidence for participation of potassium and proline transport systems in osmoregulation

Author:

Gowrishankar J

Abstract

Mu d1(Ap lac)-generated operon fusions were used in the identification of genes in Escherichia coli whose transcriptional expression is altered by changes in the osmolarity of the growth medium. One such osmoresponsive gene, designated osrA, was induced 400-fold when the osmolarity of the medium was increased with the addition of either ionic or neutral impermeable solutes but was not induced with glycerol, which is freely permeable across the cell membrane. osrA was mapped to 57.5 min and was shown to be transcribed clockwise on the E. coli chromosome. The ability of small concentrations of L-proline to promote the growth of E. coli in high-osmolar medium was shown to have been specifically lost in osrA mutants; other lines of evidence were also obtained to support the notion that osrA codes for an osmoresponsive L-proline transport system and is homologus to proU in Salmonella typhimurium. A second osmoresponsive operon identified was kdp, which codes for an inducible K+-transport system in E. coli. kdp expression was elevated 12-fold when the osmolarity of the growth medium was increased with the addition of impermeable ionic solutes but not neutral solutes; furthermore, osmoresponsivity of kdp expression was demonstrable only in K+-limiting media. kdp mutants were able to grow normally in high-osmolar media, but strains defective in both kdp and trkA (a gene for a second major K+-transport system) displayed an osmosensitive phenotype. The results suggest that transport systems for L-proline and K+, specified by osrA (proU) and kdp, respectively, play independent and important roles in osmoregulation in E. coli. A third osmoresponsive gene that was identified was lamB, which codes for an outer membrane protein for maltodextrin transport and lambda phage adsorption; its expression was reduced fourfold with increase in the osmolarity of the growth medium.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3