Deletions in one domain of the Friend virus-encoded membrane glycoprotein overcome host range restrictions for erythroleukemia

Author:

Hoatlin M E1,Ferro F E1,Geib R W1,Fox M T1,Kozak S L1,Kabat D1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098.

Abstract

Although the Friend virus-encoded membrane glycoprotein (gp55) activates erythropoietin receptors (EpoR) to cause erythroblastosis only in certain inbred strains of mice but not in other species, mutant viruses can overcome aspects of mouse resistance. Thus, mice homozygous for the resistance allele of the Fv-2 gene are unaffected by gp55 but are susceptible to mutant glycoproteins that have partial deletions in their ecotropic domains. These and other results have suggested that proteins coded for by polymorphic Fv-2 alleles might directly or indirectly interact with EpoR and that changes in gp55 can overcome this defense. A new viral mutant with an exceptionally large deletion in its ecotropic domain is now also shown to overcome Fv-2rr resistance. In all cases, the glycoproteins that activate EpoR are processed to cell surfaces as disulfide-bonded dimers. To initiate analysis of nonmurine resistances, we expressed human EpoR and mouse EpoR in the interleukin 3-dependent mouse cell line BaF3 and compared the abilities of Friend virus-encoded glycoproteins to convert these cells to growth factor independence. Human EpoR was activated in these cells by erythropoietin but was resistant to gp55. However, human EpoR was efficiently activated in these cells by the same viral mutants that overcome Fv-2rr resistance in mice. By construction and analysis of human-mouse EpoR chimeras, we obtained evidence that the cytosolic domain of human EpoR contributes to its resistance to gp55 and that this resistance is mediated by accessory cellular factors. Aspects of host resistance in both murine and nonmurine species are targeted specifically against the ecotropic domain of gp55.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3