Characterization of the exbBD operon of Escherichia coli and the role of ExbB and ExbD in TonB function and stability

Author:

Ahmer B M1,Thomas M G1,Larsen R A1,Postle K1

Affiliation:

1. Department of Genetics and Cell Biology, Washington State University, Pullman 99164-4233, USA.

Abstract

TonB protein appears to couple the electrochemical potential of the cytoplasmic membrane to active transport across the essentially unenergized outer membrane of gram-negative bacteria. ExbB protein has been identified as an auxiliary protein in this process. In this paper we show that ExbD protein, encoded by an adjacent gene in the exb cluster at 65', was also required for TonB-dependent energy transduction and, like ExbB, was required for the stability of TonB. The phenotypes of exbB exbD+ strains were essentially indistinguishable from the phenotypes of exbB+ exbD strains. Mutations in either gene resulted in the degradation of TonB protein and in decreased, but not entirely absent, sensitivities to colicins B and Ia and to bacteriophage phi 80. Evidence that the absence of ExbB or ExbD differentially affected the half-lives of newly synthesized and steady-state TonB was obtained. In the absence of ExbB or ExbD, newly synthesized TonB was degraded with a half-life of 5 to 10 min, while the half-life of TonB under steady-state conditions was significantly longer, approximately 30 min. These results were consistent with the idea that ExbB and ExbD play roles in the assembly of TonB into an energy-transducing complex. While interaction between TonB and ExbD was suggested by the effect of ExbD on TonB stability, interaction of ExbD with TonB was detected by neither in vivo cross-linking assays nor genetic tests for competition. Assays of a chromosomally encoded exbD::phoA fusion showed that exbB and exbD were transcribed as an operon, such that ExbD-PhoA levels in an exbB::Tn10 strain were reduced to 4% of the levels observed in an exbB+ strain under iron-limiting conditions. Residual ExbD-PhoA expression in an exbB::Tn10 strain was not iron regulated and may have originated from within the Tn10 element in exbB.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3