Affiliation:
1. Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90089-9176
Abstract
ABSTRACT
GRP78, also known as BiP, is a central regulator of endoplasmic reticulum (ER) homeostasis due to its multiple functional roles in protein folding, ER calcium binding, and controlling of the activation of transmembrane ER stress sensors. ER stress induction of GRP78/BiP represents a major prosurvival arm of the unfolded protein response (UPR). However, the physiological role of GRP78 in development is not known. Using a transgenic approach, we discovered that the Grp78 promoter is activated in both the trophectoderm and inner cell mass (ICM) of embryos at embryonic day 3.5 via a mechanism requiring the ER stress elements. To reveal the function of the GRP78 in vivo, we created a
tri-loxP
Grp78 mutant allele, which was further crossed with
EIIA-cre
to create a knockout allele. The
Grp78
+/
−
mice, which express 50% of the wild-type level of the GRP78 protein, are viable. Interestingly, the heterozygous Grp78 cells up-regulate the ER proteins GRP94 and protein disulfide isomerase at both the transcript and protein levels, while other UPR targets such as CHOP and XBP-1 are not affected. Further studies revealed that mouse embryonic fibroblasts from
Grp78
+/
−
mice are capable of responding to ER stress. However,
Grp78
−
/
−
embryos that are completely devoid of GRP78 lead to peri-implantation lethality. These embryos do not hatch from the zona pellucida in vitro, fail to grow in culture, and exhibit proliferation defects and a massive increase in apoptosis in the ICM, which is the precursor of embryonic stem cells. These findings provide the first evidence that GRP78 is essential for embryonic cell growth and pluripotent cell survival.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
385 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献