Effects of temperature, NaCl, and methicillin on penicillin-binding proteins, growth, peptidoglycan synthesis, and autolysis in methicillin-resistant Staphylococcus aureus

Author:

Madiraju M V1,Brunner D P1,Wilkinson B J1

Affiliation:

1. Department of Biological Sciences, Illinois State University, Normal 61761.

Abstract

Methicillin-resistant Staphylococcus aureus strains produce a fifth penicillin-binding protein (PBP), PBP 2', with low affinity for beta-lactam antibiotics that is believed to represent a beta-lactam-insensitive peptidoglycan transpeptidase. In an effort to evaluate the adequacy of PBP 2' as an explanation of methicillin resistance, PBP 2' production and the responses of growth and peptidoglycan synthesis to methicillin under different environmental conditions have been compared. In the heterogeneous methicillin-resistant strain DU4916-K7, less PBP 2' was produced at 40 degrees C than at 30 degrees C, but inclusion of 5% (wt/vol) NaCl in the medium at 40 degrees C boosted PBP 2' production and allowed growth of the organism in the presence of 10 micrograms of methicillin per ml. When exponential-phase cultures were challenged with methicillin, growth and peptidoglycan synthesis were much more resistant at 30 degrees C than at 40 degrees C. Inclusion of NaCl in medium rendered growth and peptidoglycan synthesis more methicillin resistant at 40 degrees C. Hence, there was a good correlation between PBP 2' production and methicillin-resistant peptidoglycan synthesis under these conditions. However, PBP 2' production was increased by NaCl at 30 degrees C without markedly affecting the susceptibilities of growth and peptidoglycan synthesis to methicillin. Pregrowth of cells with methicillin, which was expected to boost PBP 2' production, seemed to increase the susceptibilities of growth and peptidoglycan synthesis to methicillin. Patterns of growth and peptidoglycan synthesis susceptibilities to methicillin which were similar to those described above were found in chloramphenicol-inhibited cultures, in which presumably no induction of PBP 2' could occur during the methicillin challenge period. Complex effects were noted in the combination of subinhibitory methicillin and NaCl. Growth of cells in the presence of NaCl stimulated their autolytic activity, which was further increased by growth with subinhibitory methicillin in addition to NaCl. It appears that NaCl enhances methicillin resistance by stimulating PBP 2' production and providing osmotic support but opposes it by stimulating autolytic activity which is exacerbated by the very low cross-linking of peptidoglycan in methicillin-resistant strains grown in the presence of methicillin.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3