Affiliation:
1. Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, 1550 Linden Drive, Madison, Wisconsin 53706
Abstract
ABSTRACT
African trypanosomes are the causative agents of human trypanosomiasis (sleeping sickness). The pathogenic stage of the parasite has unique adaptations to life in the bloodstream of the mammalian host, including upregulation of endocytic and lysosomal activities. We investigated stage-specific requirements for cytoplasmic adaptor/clathrin machinery in post-Golgi apparatus biosynthetic sorting to the lysosome using RNA interference silencing of the Tbμ1 subunit of adaptor complex 1 (AP-1), in conjunction with immunolocalization, kinetic analyses of reporter transport, and quantitative endocytosis assays. Tbμ1 silencing was lethal in both stages, indicating a critical function(s) for the AP-1 machinery. Transport of soluble and membrane-bound secretory cargoes was Tbμ1 independent in both stages. In procyclic parasites, trafficking of the lysosomal membrane protein, p67, was disrupted, leading to cell surface mislocalization. The lysosomal protease trypanopain was also secreted, suggesting a transmembrane-sorting receptor for this soluble hydrolase. In bloodstream trypanosomes, both p67 and trypanopain trafficking were unaffected by Tbμ1 silencing, suggesting that AP-1 is not necessary for biosynthetic lysosomal trafficking. Endocytosis in bloodstream cells was also unaffected, indicating that AP-1 does not function at the flagellar pocket. These results indicate that post-Golgi apparatus sorting to the lysosome is critically dependent on the AP-1/clathrin machinery in procyclic trypanosomes but that this machinery is not necessary in bloodstream parasites. We propose a simple model for stage-specific default secretory trafficking in trypanosomes that is consistent with the behavior of other soluble and glycosylphosphatidylinositol-anchored cargos and which is influenced by upregulation of endocytosis in bloodstream parasites as an adaptation to life in the mammalian bloodstream.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Reference50 articles.
1. Alexander, D. L., K. J. Schwartz, A. E. Balber, and J. D. Bangs. 2002. Developmentally regulated trafficking of the lysosomal membrane protein p67 in Trypanosoma brucei. J. Cell Sci.115:3255-3263.
2. Allen, C. L., D. Goulding, and M. C. Field. 2003. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J.22:4991-5002.
3. Allen, C. L., D. Liao, W.-L. Chung, and M. C. Field. 2007. Dileucine signal-dependent and AP-1-independent targeting of a lysosomal glycoprotein in Trypanosoma brucei. Mol. Biochem. Parasitol.156:175-190.
4. Inactivation or elimination of potentially trypanolytic, complement-activating immune complexes by pathogenic trypanosomes
5. Bangs, J. D., N. Andrews, G. W. Hart, and P. T. Englund. 1986. Posttranslational modification and intracellular transport of a trypanosome variant surface glycoprotein. J. Cell Biol.103:255-263.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献