Affiliation:
1. Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Abstract
ABSTRACT
Myxococcus xanthus
social gliding motility, which is powered by type IV pili, requires the presence of exopolysaccharides (EPS) on the cell surface. The Dif chemosensory system is essential for the regulation of EPS production. It was demonstrated previously that DifA (methyl-accepting chemotaxis protein [MCP]-like), DifC (CheW-like), and DifE (CheA-like) stimulate whereas DifD (CheY-like) and DifG (CheC-like) inhibit EPS production. DifD was found not to function downstream of DifE in EPS regulation, as a
difD difE
double mutant phenocopied the
difE
single mutant. It has been proposed that DifA, DifC, and DifE form a ternary signaling complex that positively regulates EPS production through the kinase activity of DifE. DifD was proposed as a phosphate sink of phosphorylated DifE (DifE∼P), while DifG would augment the function of DifD as a phosphatase of phosphorylated DifD (DifD∼P). Here we report
in vitro
phosphorylation studies with all the Dif chemosensory proteins that were expressed and purified from
Escherichia coli
. DifE was demonstrated to be an autokinase. Consistent with the formation of a DifA-DifC-DifE complex, DifA and DifC together, but not individually, were found to influence DifE autophosphorylation. DifD, which did not inhibit DifE autophosphorylation directly, was found to accept phosphate from autophosphorylated DifE. While DifD∼P has an unusually long half-life for dephosphorylation
in vitro
, DifG efficiently dephosphorylated DifD∼P as a phosphatase. These results support a model where DifE complexes with DifA and DifC to regulate EPS production through phosphorylation of a downstream target, while DifD and DifG function synergistically to divert phosphates away from DifE∼P.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献