Biochemical and Genetic Studies of the Initiation of Human Rhinovirus 2 RNA Replication: Purification and Enzymatic Analysis of the RNA-Dependent RNA Polymerase 3D pol

Author:

Gerber Kinga1,Wimmer Eckard1,Paul Aniko V.1

Affiliation:

1. Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, New York 11794

Abstract

ABSTRACT The replication of human rhinovirus 2 (HRV2), a positive-stranded RNA virus belonging to the Picornaviridae , requires a virus-encoded RNA polymerase. We have expressed in Escherichia coli and purified both a glutathione S -transferase fusion polypeptide and an untagged form of the HRV2 RNA polymerase 3D pol . Using in vitro assay systems previously described for poliovirus RNA polymerase 3D pol (J. B. Flanegan and D. Baltimore, Proc. Natl. Acad. Sci. USA 74:3677–3680, 1977; A. V. Paul, J. H. van Boom, D. Filippov, and E. Wimmer, Nature 393:280–284, 1998), we have analyzed the biochemical properties of the two different enzyme preparations. HRV2 3D pol is both template and primer dependent, and it catalyzes two types of synthetic reactions in the presence of UTP, Mn 2+ , and a poly(A) template. The first consists of an elongation reaction of an oligo(dT) 15 primer into poly(U). The second is a protein-priming reaction in which the enzyme covalently links UMP to the hydroxyl group of tyrosine in the terminal protein VPg, yielding VPgpU. This precursor is elongated first into VPgpUpU and then into VPg-linked poly(U), which is identical to the 5′ end of picornavirus minus strands. The two forms of the enzyme are about equally active both in the oligonucleotide elongation and in the VPg-primed reaction. Various synthetic mutant VPgs were tested as substrates in the VPg uridylylation reaction.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3