Adenovirus DNA Binding Protein Interacts with the SNF2-Related CBP Activator Protein (SrCap) and Inhibits SrCap-Mediated Transcription

Author:

Xu Xiequn1,Chackalaparampil Isaac1,Monroy M. Alexandra2,Cannella Maria T.1,Pesek Elizabeth1,Chrivia John2,Yaciuk Peter1

Affiliation:

1. Departments of Molecular Microbiology and Immunology1 and

2. Pharmacological and Physiological Sciences,2 St. Louis University Health Sciences Center, St. Louis, Missouri 63104

Abstract

ABSTRACT The SNF2-related CBP activator protein, SrCap (pronounced “sir cap”), shares homology with the SNF2/SWI2 protein family. SrCap was cloned through its ability to bind CBP. SrCap can function as a CBP coactivator and can activate transcription in a reporter assay when expressed as a Gal-SrCap fusion protein. A monoclonal antibody raised against the carboxyl terminus of SrCap coimmunoprecipitates CBP/p300, supporting the model that SrCap is a CBP binding protein and that these proteins can be found together in a cellular protein complex. In addition, several cellular proteins are coimmunoprecipitated by the SrCap-specific antibody. Since adenovirus E1A proteins interact with CBP/p300 proteins, we examined what proteins could be copurified in a SrCap-specific coimmunoprecipitation assay from lysates of adenovirus-infected cells. While E1A proteins were not detected in this complex, to our surprise, we observed the presence of an infected-cell-specific band of 72 kDa, which we suspected might be the adenovirus DNA binding protein, DBP. The adenovirus DBP is a multifunctional protein involved in several aspects of the adenovirus life cycle, including an ability to modulate transcription. The identity of DBP was confirmed by DBP-specific Western blot analysis and by reimmunoprecipitating DBP from denatured SrCap-specific protein complexes. Using in vitro-translated DBP and SrCap proteins, we demonstrated that these proteins interact. To determine whether this interaction could affect SrCap-mediated transcription, we tested whether increasing amounts of DBP could modulate the Gal-SrCap transcription activity. We observed that DBP inhibited Gal-SrCap transcription activity in a dose-dependent manner. These data suggest a novel mechanism of adenovirus host cell control by which DBP binds to and inactivates SrCap, a member of the SNF2 chromatin-remodeling protein family.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3