NF-κB cis -Acting Motifs of the Human Immunodeficiency Virus (HIV) Long Terminal Repeat Regulate HIV Transcription in Human Macrophages

Author:

Asin Susana1,Bren Gary D.1,Carmona Eva M.1,Solan Nancie J.1,Paya Carlos V.123

Affiliation:

1. Department of Immunology1 and

2. Divisions of Infectious Diseases2 and

3. Experimental Pathology,3 Mayo Clinic, Rochester, Minnesota 55905

Abstract

ABSTRACT The role of NF-κB in the reactivation of human immunodeficiency virus (HIV) from latency in CD4 T lymphocytes is well documented. However, its role in driving HIV transcription in human macrophages, which contain a constitutive nuclear pool of NF-κB, is less well understood. In this study we have investigated the role that the constitutive pool of NF-κB and the NF-κB cis -acting motifs of the HIV long terminal repeat (LTR) play in regulating HIV transcription in human monocytic cells and primary macrophages. Inhibition of the constitutive nuclear pool of NF-κB (RelA and RelB) in the promonocytic U937 cell line using dominant-negative IκBα significantly decreases HIV replication. Moreover, it is demonstrated that in the differentiated monocytic cell line THP1, which contains a constitutive nuclear pool of NF-κB (RelB),an HIV provirus containing mutations of the κB cis -acting sites in the LTR is transcriptionally impaired. Reduction of the constitutive pool of NF-κB in human macrophages by an adenovirus vector expressing a dominant-negative IκBα also reduces HIV transcription. Lastly, mutation of the NF-κB cis -acting sites in the LTR of an R5 HIV provirus completely abrogates the first cycle of HIV transcription. These studies indicate that the cis -acting NF-κB motifs of the HIV LTR are critical in initiating HIV transcription in human macrophages and suggest that the constitutive nuclear pool of NF-κB is important in regulating HIV transcription in these cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3