Comprehensive Mutational Analysis of the Moloney Murine Leukemia Virus Envelope Protein

Author:

Rothenberg S. Michael12,Olsen Mari N.23,Laurent Louise Chang4,Crowley Rachel Adams12,Brown Patrick O.23

Affiliation:

1. Department of Biochemistry,2

2. Program in Cancer Biology,1 and

3. Howard Hughes Medical Institute,3 Stanford University Medical Center, Palo Alto, California 94305, and

4. Department of Biochemistry, University of California at San Francisco, San Francisco, California 941434

Abstract

ABSTRACT The envelope (Env) protein of Moloney murine leukemia virus is the primary mediator of viral entry. We constructed a large pool of insertion mutations in the env gene and analyzed the fitness of each mutant in completing two critical steps in the virus life cycle: (i) the expression and delivery of the Env protein to the cell surface during virion assembly and (ii) the infectivity of virions displaying the mutant proteins. The majority of the mutants were poorly expressed at the producer cell surface, suggesting folding defects due to the presence of the inserted residues. The mutants with residual infectivity had insertions either in the amino-terminal signal sequence region, two disulfide-bonded loops in the receptor binding domain, discrete regions of the carboxy-terminal region of the surface subunit (SU), or the cytoplasmic tail. Insertions that allowed the mutants to reach the cell surface but not to mediate detectable infection were located within the amino-terminal sequence of the mature Env, within the SU carboxy-terminal region, near putative receptor binding residues, and throughout the fusion peptide. Independent analysis of select mutants in this group allowed more precise identification of the defect in Env function. Mapping of mutant phenotypes to a structural model of the receptor-binding domain provides insights into the protein's functional organization. The high-resolution functional map reported here will be valuable for the engineering of the Env protein for a variety of uses, including gene therapy.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3