Affiliation:
1. Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
Abstract
ABSTRACT
Glycoprotein B (gB), gC, gD, and gH:L of herpes simplex virus type 1 (HSV-1) are implicated in virus adsorption and penetration. gB, gD, and gH:L are essential for these processes, and their expression is necessary and sufficient to induce cell fusion. The current view is that these molecules act in concert as a functional complex, and cross-linking studies support this view (C. G. Handler, R. J. Eisenberg, and G. H. Cohen, J. Virol. 70:6067–6075, 1996). We examined the glycoprotein composition, with respect to gB, gC, gD, and gH, of mutant virions lacking individual glycoproteins and the sedimentation characteristics of glycoproteins extracted from these virions. The amounts of gB, gC, gD, or gH detected in virions did not alter when any one of these molecules was absent, and it therefore appears that they are incorporated into the virion independently of each other. The sedimentation characteristics of gB and gD from mutant virions were not different from those of wild-type virions. We confirmed that gB, gC, and gD could be cross-linked to each other on the virion surface but found that the absence of one glycoprotein did not alter the outcome of cross-linking reactions between the remaining molecules. The incorporation and arrangement of these glycoproteins in the virion envelope therefore appear to be independent of the individual molecular species. This is difficult to reconcile with the concept that gB, gC, gD, and gH:L are incorporated as a functional complex into the virion envelope.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献