Real-Time Detection of Influenza A, Influenza B, and Respiratory Syncytial Virus A and B in Respiratory Specimens by Use of Nanoparticle Probes

Author:

Jannetto Paul J.12,Buchan Blake W.1,Vaughan Kimberly A.2,Ledford Joellen S.3,Anderson Dennis K.3,Henley Donald C.3,Quigley Neil B.3,Ledeboer Nathan A.12

Affiliation:

1. Department of Pathology, Medical College of Wisconsin

2. Dynacare Laboratories, 9200 West Wisconsin Ave., Milwaukee, Wisconsin 53226

3. Molecular Pathology Laboratory Network, Inc., 250 East Broadway, Maryville, Tennessee 37804

Abstract

ABSTRACT Seasonal epidemics of influenza and respiratory syncytial virus are responsible for significant morbidity and mortality worldwide. Infrequently, novel or reemergent strains of influenza A virus have caused rapid, severe global pandemics resulting in millions of fatalities. The ability to efficiently and accurately detect and differentiate respiratory viruses is paramount for effective treatment, infection control, and epidemiological surveillance. We evaluated the ability of two FDA-cleared nucleic acid-based tests, the semiautomated respiratory virus nucleic acid test (VRNAT) and the fully automated respiratory virus nucleic acid test SP (RVNAT SP ) (Nanosphere Inc., Northbrook, IL) to detect influenza A virus, influenza B virus, and respiratory syncytial virus A and B (RSV A/B) from clinical nasopharyngeal swab specimens. Detection of viral RNA in both tests is based on nucleic acid amplification followed by hybridization to capture probes immobilized on a glass slide. A novel technology utilizing gold nanoparticle-conjugated probes is utilized to detect the presence of captured target DNA. This microarray-based approach to detection has proven to be more sensitive than the traditional culture/direct fluorescent-antibody assay (DFA) method for detecting RSV and influenza viruses in clinical specimens, including the novel 2009 H1N1 strain. Specifically, we report 98.0% sensitivity and 96.5% specificity for the VRNAT compared to culture/DFA. Further, the VRNAT detected virus in an additional 58% of specimens that were culture negative. These data were confirmed using bidirectional sequencing. Evaluation of the fully automated RVNAT SP , which is built on the same detection technology as the VRNAT but contains an updated processor enabling complete automation, revealed the two tests to be functionally equivalent. Thus, the RVNAT SP is a fully automated sample-to-result test capable of reliable detection of select respiratory viruses directly from clinical specimens in 3.5 h.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3