Abstract
Chromosomal beta-lactamase, a periplasmic enzyme of Escherichia coli, was studied with respect to its regulation in vivo. Both the activity and the amount of beta-lactamase increased with growth rate. During a nutritional shift-down, chromosomal beta-lactamase activity followed stable ribonucleic acid accumulation. After a nutritional shift-up the differential rate of beta-lactamase synthesis did not increase immediately (like stable ribonucleic acid), but did increase after a lag period of 30 min. To determine whether beta-lactamase was under stringent control, strains carrying a temperature-sensitive valyl-transfer ribonucleic acid synthetase and differing only in the allelic state of the relA gene were shifted from a permissive to a semipermissive temperature. No influence by the relA gene product was found on beta-lactamase synthesis. The regulation of this periplasmic enzyme is discussed in relation to that of some components of the translational apparatus.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献